Light-Induced Increase of Electron Diffusion Length in a p-n Junction Type CH3NH3PbBr3 Perovskite Solar Cell.
نویسندگان
چکیده
High band gap, high open-circuit voltage solar cells with methylammonium lead tribromide (MAPbBr3) perovskite absorbers are of interest for spectral splitting and photoelectrochemical applications, because of their good performance and ease of processing. The physical origin of high performance in these and similar perovskite-based devices remains only partially understood. Using cross-sectional electron-beam-induced current (EBIC) measurements, we find an increase in carrier diffusion length in MAPbBr3(Cl)-based solar cells upon low intensity (a few percent of 1 sun intensity) blue laser illumination. Comparing dark and illuminated conditions, the minority carrier (electron) diffusion length increases about 3.5 times from Ln = 100 ± 50 nm to 360 ± 22 nm. The EBIC cross section profile indicates a p-n structure between the n-FTO/TiO2 and p-perovskite, rather than the p-i-n structure, reported for the iodide derivative. On the basis of the variation in space-charge region width with varying bias, measured by EBIC and capacitance-voltage measurements, we estimate the net-doping concentration in MAPbBr3(Cl) to be 3-6 × 10(17) cm(-3).
منابع مشابه
Design and Simulation of a Highly Efficient InGaN/Si Double-Junction Solar Cell
A solar cell is an electronic device which not only harvests photovoltaic effect but also transforms light energy into electricity. In photovoltaic phenomenon, a P-N junction is created to form an empty region. The presented paper aims at proposing a new highly efficient InGaN/Si double-junction solar cell structure. This cell is designed to be used in a real environmental situation, so only s...
متن کاملEvolution of Diffusion Length and Trap State Induced by Chloride in Perovskite Solar Cell
Chloride (from PbCl2 or CH3NH3Cl) has been reported to improve the morphology of perovskite thin film and power conversion efficiency (PCE) of corresponding perovskite solar cells (PSCs). However, the mechanism why chloride functions well in perovskite is unclear. In this work, we investigate the effects of chloric additive (from CH3NH3Cl) on the morphology, diffusion length, and trap state of ...
متن کاملHigh efficient Perovskite solar cells base on Niobium Doped TiO2 as a Buffer Layer
Here, the effect of lightly Niobium doped TiO2 layer on the performance of perovskite solar cells has been studied by using solar cell capacitance simulator (SCAPS). N addition, the effects of Niobium concentration, buffer film thickness and operating temperature on the performance of the perovskite solar cell are investigated. For doping level of 3.0 mol% into the TiO2 layer, cell efficiency o...
متن کاملHighly efficient single-junction GaAs thin-film solar cell on flexible substrate
There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The forme...
متن کاملGreen growth of CdSe nanostructures for application in Schottky type solar cell
CdSe nanostructures were synthesized by using green chemical route as starch was used as capping agent. XRD, HR-TEM, SEAD, UV and PL studies were made for structural and optical properties of the prepared sample. Film morphology and the thickness measurement of n-CdSe were carried out with AFM analysis. I-V characteristics curve of this junction confirmed the formation of Schottky contact betwe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry letters
دوره 6 13 شماره
صفحات -
تاریخ انتشار 2015